3,304 research outputs found

    Anomalous Transport in Conical Granular Piles

    Full text link
    Experiments on 2+1-dimensional piles of elongated particles are performed. Comparison with previous experiments in 1+1 dimensions shows that the addition of one extra dimension to the dynamics changes completely the avalanche properties, appearing a characteristic avalanche size. Nevertheless, the time single grains need to cross the whole pile varies smoothly between several orders of magnitude, from a few seconds to more than 100 hours. This behavior is described by a power-law distribution, signaling the existence of scale invariance in the transport process.Comment: Accepted in PR

    Point-occurrence self-similarity in crackling-noise systems and in other complex systems

    Full text link
    It has been recently found that a number of systems displaying crackling noise also show a remarkable behavior regarding the temporal occurrence of successive events versus their size: a scaling law for the probability distributions of waiting times as a function of a minimum size is fulfilled, signaling the existence on those systems of self-similarity in time-size. This property is also present in some non-crackling systems. Here, the uncommon character of the scaling law is illustrated with simple marked renewal processes, built by definition with no correlations. Whereas processes with a finite mean waiting time do not fulfill a scaling law in general and tend towards a Poisson process in the limit of very high sizes, processes without a finite mean tend to another class of distributions, characterized by double power-law waiting-time densities. This is somehow reminiscent of the generalized central limit theorem. A model with short-range correlations is not able to escape from the attraction of those limit distributions. A discussion on open problems in the modeling of these properties is provided.Comment: Submitted to J. Stat. Mech. for the proceedings of UPON 2008 (Lyon), topic: crackling nois

    Scaling of avalanche queues in directed dissipative sandpiles

    Full text link
    We simulate queues of activity in a directed sandpile automaton in 1+1 dimensions by adding grains at the top row with driving rate 0<r10 < r \leq 1. The duration of elementary avalanches is exactly described by the distribution P1(t)t3/2exp(1/Lc)P_1(t) \sim t^{-3/2}\exp{(-1/L_c)}, limited either by the system size or by dissipation at defects Lc=min(L,ξ)L_c= \min (L,\xi). Recognizing the probability P1P_1 as a distribution of service time of jobs arriving at a server with frequency rr, the model represents a new example of the server queue in the queue theory. We study numerically and analytically the tail behavior of the distributions of busy periods and energy dissipated in the queue and the probability of an infinite queue as a function of driving rate.Comment: 11 pages, 9 figures; To appear in Phys. Rev.

    Pulse-coupled relaxation oscillators: from biological synchronization to Self-Organized Criticality

    Full text link
    It is shown that globally-coupled oscillators with pulse interaction can synchronize under broader conditions than widely believed from a theorem of Mirollo \& Strogatz \cite{MirolloII}. This behavior is stable against frozen disorder. Beside the relevance to biology, it is argued that synchronization in relaxation oscillator models is related to Self-Organized Criticality in Stick-Slip-like models.Comment: 4 pages, RevTeX, 1 uuencoded postscript figure in separate file, accepted for publication in Phys. Rev. Lett

    Long-Tailed Trapping Times and Levy Flights in a Self-Organized Critical Granular System

    Get PDF
    We present a continuous time random walk model for the scale-invariant transport found in a self-organized critical rice pile [Christensen et al., Phys. Rev. Lett. 77, 107 (1996)]. From our analytical results it is shown that the dynamics of the experiment can be explained in terms of L\'evy flights for the grains and a long-tailed distribution of trapping times. Scaling relations for the exponents of these distributions are obtained. The predicted microscopic behavior is confirmed by means of a cellular automaton model.Comment: 4 pages, RevTex, includes 3 PostScript figures, submitted to Phys. Rev. Let

    Universality of rain event size distributions

    Full text link
    We compare rain event size distributions derived from measurements in climatically different regions, which we find to be well approximated by power laws of similar exponents over broad ranges. Differences can be seen in the large-scale cutoffs of the distributions. Event duration distributions suggest that the scale-free aspects are related to the absence of characteristic scales in the meteorological mesoscale.Comment: 16 pages, 10 figure

    A Comparison of Distributed Spatial Data Management Systems for Processing Distance Join Queries

    Get PDF
    Due to the ubiquitous use of spatial data applications and the large amounts of spatial data that these applications generate, the processing of large-scale distance joins in distributed systems is becoming increasingly popular. Two of the most studied distance join queries are the K Closest Pair Query (KCPQ) and the ε Distance Join Query (εDJQ). The KCPQ finds the K closest pairs of points from two datasets and the εDJQ finds all the possible pairs of points from two datasets, that are within a distance threshold ε of each other. Distributed cluster-based computing systems can be classified in Hadoop-based and Spark-based systems. Based on this classification, in this paper, we compare two of the most current and leading distributed spatial data management systems, namely SpatialHadoop and LocationSpark, by evaluating the performance of existing and newly proposed parallel and distributed distance join query algorithms in different situations with big real-world datasets. As a general conclusion, while SpatialHadoop is more mature and robust system, LocationSpark is the winner with respect to the total execution time

    A systems-level analysis of total-body PET data reveals complex skeletal metabolism networks in vivo

    Get PDF
    Bone is now regarded to be a key regulator of a number of metabolic processes, in addition to the regulation of mineral metabolism. However, our understanding of complex bone metabolic interactions at a systems level remains rudimentary. in vitro molecular biology and bioinformatics approaches have frequently been used to understand the mechanistic changes underlying disease at the cell level, however, these approaches lack the capability to interrogate dynamic multi-bone metabolic interactions in vivo. Here we present a novel and integrative approach to understand complex bone metabolic interactions in vivo using total-body positron emission tomography (PET) network analysis of murine 18F-FDG scans, as a biomarker of glucose metabolism in bones. In this report we show that different bones within the skeleton have a unique glucose metabolism and form a complex metabolic network, which could not be identified using single tissue simplistic PET standard uptake values analysis. The application of our approach could reveal new physiological and pathological tissue interactions beyond skeletal metabolism, due to PET radiotracers diversity and the advent of clinical total-body PET systems

    Synchronization of Integrate and Fire oscillators with global coupling

    Full text link
    In this article we study the behavior of globally coupled assemblies of a large number of Integrate and Fire oscillators with excitatory pulse-like interactions. On some simple models we show that the additive effects of pulses on the state of Integrate and Fire oscillators are sufficient for the synchronization of the relaxations of all the oscillators. This synchronization occurs in two forms depending on the system: either the oscillators evolve ``en bloc'' at the same phase and therefore relax together or the oscillators do not remain in phase but their relaxations occur always in stable avalanches. We prove that synchronization can occur independently of the convexity or concavity of the oscillators evolution function. Furthermore the presence of disorder, up to some level, is not only compatible with synchronization, but removes some possible degeneracy of identical systems and allows new mechanisms towards this state.Comment: 37 pages, 19 postscript figures, Latex 2
    corecore